Ordering Code of 2PBA Pumps

[^0]Special Version ; BRONZE EDITION

Formulas			
Pump Output Flow	GPM	GPM $=($ Speed (rpm) \times disp. (cu. in.) $) / 231$	GPM $=(\mathrm{n} \times \mathrm{d}) / 231$
Pump Input Horsepower	HP	HP $=$ GPM \times Pressure (psi) $/ 1714 \times$ Efficiency	$H P=(Q \times P) / 1714 \times E$
Pump Efficiency	E	Overall Efficiency $=$ Output HP/ Input HP	Eoverall $=$ HPOut $/$ HPIn $\times 100$
		Overall Efficiency = Volumetric Eff. \times Mechanical Eff.	EOverall $=$ EffVol. \times EffMech.
Pump Volumetric Efficiency	E	$\begin{aligned} & \text { Volumetric Efficiency = Actual Flow Rate Output (GPM) / } \\ & \text { Theoretical Flow Rate Output }(\text { GPM }) \times 100 \end{aligned}$	EffVol. = QAct. / QTheo. X 100
Pump Mechanical Efficiency	E	Mechanical Efficiency = Theoretical Torque to Drive / Actual Torque to Drive $\times 100$	EffMech $=$ TTheo. $/$ TAct. $\times 100$
Pump Displacement	CIPR	Dsplomnt (In.3 / rev. $)=$ Flow Rate (GPM) $\times 231 /$ Pump RPM	CIPR $=$ GPM $\times 231 /$ RPM
Pump Torque	T	Torque $=$ Horsepower $\times 63025 /$ RPM	$\mathrm{T}=63025 \times \mathrm{HP} / \mathrm{RPM}$
		Torque $=$ Pressure (PSIG) \times Pump Displacement (CIPR) $/ 2 \pi$	$\mathrm{T}=\mathrm{P} \times \mathrm{CIPR} / 6.28$

[^1]
[^0]: 2PBA Bent Axis Piston Pump, Fixed Displacement, 350 @ 400 bar.

[^1]: Horsepower for driving a pump : For every 1 hp of drive, the equivalent of $1 \mathrm{gpm} @ 1500 \mathrm{psi}$ can be produced.
 Horsepower for idling a pump : To idle a pump when it is unloaded will require about 5% of it's full rated power
 Wattage for heating hydraulic oil : Each watt will raise the temperature of 1 gallon of oil by $1^{\circ} \mathrm{F}$. per hour.
 Flow velocity in hydraulic lines : Pump suction lines 2 to 4 feet per second, pressure lines up to $500 \mathrm{psi}-10$ to 15 ft ./sec., pressure lines 500 to $3000 \mathrm{psi}-15$ to 20 ft ./sec.; all oil lines in air-over-oil systems; 4 ft ./sec.

