
Ordering Code of 2PBM Motors

Formulas			
Pump Output Flow	GPM	GPM = (Speed (rpm) × disp. (cu. in.)) / 231	GPM = (n ×d) / 231
Pump Input Horsepower	НР	HP = GPM × Pressure (psi) / 1714 × Efficiency	HP = (Q ×P) / 1714 × E
Pump Efficiency	E -	Overall Efficiency = Output HP / Input HP	Eoverall = HPOut / HPIn X 100
		Overall Efficiency = Volumetric Eff. × Mechanical Eff.	EOverall = EffVol. × EffMech.
Pump Volumetric Efficiency	E	Volumetric Efficiency = Actual Flow Rate Output (GPM) / Theoretical Flow Rate Output (GPM) × 100	EffVol. = QAct. / QTheo. X 100
Pump Mechanical Efficiency	E	Mechanical Efficiency = Theoretical Torque to Drive / Actual Torque to Drive × 100	EffMech = TTheo. / TAct. × 100
Pump Displacement	CIPR	Dsplcmnt (In.3 / rev.) = Flow Rate (GPM) × 231 / Pump RPM	CIPR = GPM × 231 / RPM
Pump Torque	т	Torque = Horsepower × 63025 / RPM	T = 63025 × HP / RPM
		Torque = Pressure (PSIG) × Pump Displacement (CIPR) / 2π	T = P × CIPR / 6.28

Horsepower for driving a pump

: For every 1 hp of drive, the equivalent of 1 gpm @ 1500 psi can be produced.

Horsepower for idling a pump

: To idle a pump when it is unloaded will require about 5% of it's full rated power

Wattage for heating hydraulic oil : Each watt will raise the temperature of 1 gallon of oil by 1° F. per hour.

Flow velocity in hydraulic lines

: Pump suction lines 2 to 4 feet per second, pressure lines up to 500 psi - 10 to 15 ft./sec., pressure lines 500 to 3000 psi - 15 to 20 ft./sec.; all oil lines in air-over-oil systems; 4 ft./sec.